Loss of Virulence in *Ralstonia solanacearum* Strains by Infection with φRSM Phages and Utilization of the Avirulent Strains as Biocontrol Agents against Tomato Bacterial Wilt

Yamada, T., Addy, H. S., Kawasaki, T., and Fujie, M.

Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan

*Ralstonia solanacearum* is a widely distributed soil-borne phytopathogen belonging to the β subdivision of Proteobacteria. It causes lethal bacterial wilt of more than 200 plant species, including tomato. During infection, *R. solanacearum* cells express various virulence and pathogenicity factors resulting in typical wilting symptoms in host plants. φRSM1 and φRSM3 (φRSM phages) are filamentous phages (inoviruses) that infect *R. solanacearum*. Infection by φRSM phages causes several cultural and physiological changes to host cells, especially loss of virulence. In this study, we characterized changes related to the virulence in φRSM3-infected cells, including (i) reduced twitching motility and reduced amounts of type IV pili (Tfp), (ii) lower levels of β-1,4-endoglucanase (Egl) activity and extracellular polysaccharides (EPS) production, and (iii) reduced expression of certain genes (*egl*, *pehC*, *phcA*, *phcB*, *pilT*, and *hrpB*). The significantly lower levels of *phcA* and *phcB* expression in φRSM3-infected cells suggested that functional PhcA was insufficient to activate many virulence genes. Tomato plants injected with φRSM3-infected cells of different *R. solanacearum* strains did not show wilting symptoms. The virulence and virulence factors were restored when φRSM3-encoded orf15, the gene for a putative repressor-like protein was disrupted. Expression levels of *phcA* as well as other virulence-related genes in φRSM3-φORF15-infected cells were comparable with those in wild type cells, suggesting that orf15 of φRSM3 may repress *phcA* and consequently result in loss of virulence. Causative strains isolated from wilted tomato can be easily converted to be avirulent and be used to prevent expansion of the disease on-site.