UC-Davis Tomato Breeding and Genetics Research Program

Dina St.Clair
Dept. of Plant Sciences
University of California-Davis
Tomato (*Lycopersicon* species)
Wild tomato species: Source of genetic diversity (V_G) for agricultural traits

- Cultivated tomato (*L. esculentum*)
 - domestication bottlenecks \rightarrow severe reduction in V_G \rightarrow limits selection gain

- Wild *Lycopersicon* species \rightarrow rich source of V_G
 - *Resistance to biotic stresses* (*pathogens, pests*)
 - *Resistance to abiotic stresses* (*cold, heat, drought, salt*)
 - *Nutritional and fruit quality traits*
Improving Quantitative Traits in Plant Breeding

- Target selected beneficial QTLs from wild tomato species for marker-assisted (MAS) breeding
- Issue: undesirable linked genes (linkage drag)
- Ultimate target for MAS: Genes underlying QTLs that control the trait phenotype
- Selection for target genes to minimize linkage drag & enhance crop improvement
Phytophthora infestans (Late Blight): Infects Tomato and Potato

Symptoms: water-soaked lesions, tissue necrosis on leaves, stems, fruit → can spread rapidly → plant death

- Cultivated tomato (and potato) lack resistance
- Wild species are resistant to *P. infestans*
Genetic resistance to *P. infestans*

- Resistance present in wild species:
 - qualitative (controlled by dominant ‘*R*’ genes)
 - quantitative (QTLs)
- *R*-genes: exhibit classic ‘gene-for-gene’ relationship with pathogen *Avr* loci
- New isolates quickly overcome single *R*-genes
- Quantitative resistance: longer lasting, ‘durable’?
QTL Mapping of Quantitative Resistance to Late Blight in Tomato: Approach

• Reciprocal backcross populations:
 \[L. \text{esculentum (SC)} \times L. \text{hirsutum LA2099 (SI)}\]
 ↓
 \[♀ L. \text{esc.} \times ♂ \underline{F_1 \text{hybrid}} (\text{SI}) ♀ \times ♂ L. \text{hir.}\]
 ↓
 \[\text{BC}_{1}-\text{E} (n = 213) \quad \text{BC}_{1}-\text{H} (n = 133)\]
 \{clonal propagation of each BC\text{$_1$} plant\}

• Disease phenotyping: field, whole plants, leaflets
• Replicated experiments over 2 years
Late blight resistance QTLs mapped in reciprocal BC₁
L. esculentum × L. hirsutum populations

Chromosomes 4, 5, & 6
Mapping of LB Resistance QTLs in *L. esculentum × L. hirsutum*: Results

- QTLs detected across experiments and assays: *QTLs lb1a, lb2a, lb3, lb4, lb5b, lb6ab & lb11b*
 - % phenotypic variation per QTL: 7% to 27%
 - *No* coincidence with locations of *Ph1, Ph2, Ph3* (known tomato *P. infestans* qualitative *R* genes)

- These QTLs represent a novel source of resistance to *P. infestans* in tomato
Fine mapping of LB resistance QTLs:
lb4, lb5b, lb11b

- QTL regions are large (> 25 cM) → Refine position by fine-mapping
- Recombinant sub-near-isogenic lines (sub-NILs) for each single QTL region in an *L. esculentum* background used to perform fine mapping → narrow location of QTL
- Is resistance associated (+/-) with horticultural traits?
- Identify target regions for high-resolution mapping and MAS breeding
LB-susceptible *L. esculentum*

BC$_4$ NIL for a resistance QTL introgressed from *L. hirsutum*
NIL 11 sub-NIL genotypes and LB resistance means (by trait, location, date), LSD comparisons

<table>
<thead>
<tr>
<th>sub-NIL</th>
<th>CD17</th>
<th>CT182</th>
<th>TG147</th>
<th>TG401</th>
<th>TG286</th>
<th>TG467</th>
<th>TG346</th>
<th>TG105</th>
<th>TG26</th>
<th>TG93</th>
</tr>
</thead>
<tbody>
<tr>
<td>3975</td>
<td></td>
</tr>
<tr>
<td>4637</td>
<td></td>
</tr>
<tr>
<td>TG174</td>
<td></td>
</tr>
<tr>
<td>TG47</td>
<td></td>
</tr>
<tr>
<td>4013</td>
<td></td>
</tr>
<tr>
<td>TG59</td>
<td></td>
</tr>
<tr>
<td>TG36</td>
<td></td>
</tr>
<tr>
<td>TG30</td>
<td></td>
</tr>
<tr>
<td>ST11</td>
<td></td>
</tr>
<tr>
<td>ST10</td>
<td></td>
</tr>
<tr>
<td>ST22</td>
<td></td>
</tr>
<tr>
<td>ST33</td>
<td></td>
</tr>
</tbody>
</table>

10 cM

<table>
<thead>
<tr>
<th>Trait</th>
<th>PI1.1</th>
<th>PI1.2</th>
<th>PI1.3</th>
<th>PI1.2</th>
<th>ST1.1</th>
<th>ST1.2</th>
<th>ST1.2</th>
<th>ST3.1</th>
<th>ST3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG94</td>
<td>5.2</td>
<td>6.2</td>
<td>3.7</td>
<td>6.4</td>
<td>3.8</td>
<td>4.0</td>
<td>3.8</td>
<td>3.4</td>
<td>5.0</td>
</tr>
<tr>
<td>CD17</td>
<td>4.4</td>
<td>5.5</td>
<td>3.5</td>
<td>7.0</td>
<td>3.4</td>
<td>3.6</td>
<td>4.0</td>
<td>3.4</td>
<td>5.0</td>
</tr>
<tr>
<td>TG174</td>
<td>3.7</td>
<td>4.8</td>
<td>2.7</td>
<td>6.2</td>
<td>1.8</td>
<td>2.1</td>
<td>3.0</td>
<td>2.5</td>
<td>2.7</td>
</tr>
<tr>
<td>TG467</td>
<td>4.8</td>
<td>5.7</td>
<td>3.4</td>
<td>6.5</td>
<td>2.9</td>
<td>3.2</td>
<td>4.1</td>
<td>3.4</td>
<td>4.3</td>
</tr>
<tr>
<td>TG346</td>
<td>4.0</td>
<td>4.9</td>
<td>2.8</td>
<td>5.7</td>
<td>2.1</td>
<td>3.0</td>
<td>3.3</td>
<td>2.3</td>
<td>3.5</td>
</tr>
<tr>
<td>TG105</td>
<td>2.5</td>
<td>4.4</td>
<td>2.6</td>
<td>6.5</td>
<td>2.1</td>
<td>2.9</td>
<td>3.7</td>
<td>2.3</td>
<td>4.2</td>
</tr>
<tr>
<td>TG26</td>
<td>2.9</td>
<td>4.6</td>
<td>2.0</td>
<td>5.9</td>
<td>2.2</td>
<td>2.6</td>
<td>3.7</td>
<td>2.6</td>
<td>4.1</td>
</tr>
<tr>
<td>TG93</td>
<td>3.0</td>
<td>3.9</td>
<td>2.4</td>
<td>6.0</td>
<td>2.1</td>
<td>2.3</td>
<td>4.0</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>TG174</td>
<td>2.9</td>
<td>3.6</td>
<td>2.4</td>
<td>5.9</td>
<td>2.0</td>
<td>2.6</td>
<td>3.3</td>
<td>2.6</td>
<td>3.7</td>
</tr>
<tr>
<td>TG467</td>
<td>3.4</td>
<td>5.1</td>
<td>2.0</td>
<td>5.9</td>
<td>2.4</td>
<td>3.1</td>
<td>3.8</td>
<td>2.7</td>
<td>3.9</td>
</tr>
<tr>
<td>TG346</td>
<td>3.7</td>
<td>5.1</td>
<td>2.2</td>
<td>6.4</td>
<td>2.6</td>
<td>3.1</td>
<td>3.6</td>
<td>2.8</td>
<td>4.1</td>
</tr>
<tr>
<td>TG105</td>
<td>3.2</td>
<td>5.0</td>
<td>2.3</td>
<td>5.9</td>
<td>2.1</td>
<td>3.3</td>
<td>3.9</td>
<td>2.8</td>
<td>3.4</td>
</tr>
<tr>
<td>TG26</td>
<td>2.9</td>
<td>3.7</td>
<td>2.2</td>
<td>5.7</td>
<td>2.1</td>
<td>2.2</td>
<td>3.8</td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td>TG93</td>
<td>3.3</td>
<td>4.6</td>
<td>2.6</td>
<td>6.0</td>
<td>2.8</td>
<td>2.8</td>
<td>3.4</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>TG174</td>
<td>2.5</td>
<td>4.6</td>
<td>2.8</td>
<td>6.4</td>
<td>2.1</td>
<td>2.9</td>
<td>4.0</td>
<td>3.1</td>
<td>3.0</td>
</tr>
<tr>
<td>TG467</td>
<td>3.5</td>
<td>4.8</td>
<td>2.4</td>
<td>6.0</td>
<td>2.3</td>
<td>2.9</td>
<td>3.7</td>
<td>2.8</td>
<td>3.3</td>
</tr>
<tr>
<td>TG346</td>
<td>2.5</td>
<td>5.0</td>
<td>3.0</td>
<td>6.2</td>
<td>2.5</td>
<td>2.9</td>
<td>3.9</td>
<td>2.8</td>
<td>4.0</td>
</tr>
<tr>
<td>TG105</td>
<td>3.0</td>
<td>5.0</td>
<td>2.6</td>
<td>6.4</td>
<td>2.5</td>
<td>3.0</td>
<td>3.6</td>
<td>3.0</td>
<td>3.6</td>
</tr>
<tr>
<td>TG26</td>
<td>4.0</td>
<td>5.2</td>
<td>3.0</td>
<td>6.8</td>
<td>2.3</td>
<td>2.9</td>
<td>3.7</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>TG93</td>
<td>4.1</td>
<td>5.3</td>
<td>2.7</td>
<td>6.2</td>
<td>2.8</td>
<td>2.3</td>
<td>3.5</td>
<td>2.7</td>
<td>3.4</td>
</tr>
<tr>
<td>TG174</td>
<td>2.5</td>
<td>4.7</td>
<td>2.7</td>
<td>5.6</td>
<td>2.2</td>
<td>2.4</td>
<td>4.0</td>
<td>2.4</td>
<td>3.5</td>
</tr>
<tr>
<td>TG467</td>
<td>3.4</td>
<td>4.5</td>
<td>2.5</td>
<td>6.7</td>
<td>2.6</td>
<td>2.5</td>
<td>3.1</td>
<td>2.9</td>
<td>4.0</td>
</tr>
<tr>
<td>TG346</td>
<td>2.1</td>
<td>4.6</td>
<td>2.2</td>
<td>5.5</td>
<td>1.9</td>
<td>2.4</td>
<td>3.3</td>
<td>2.7</td>
<td>3.6</td>
</tr>
<tr>
<td>TG105</td>
<td>2.7</td>
<td>5.3</td>
<td>2.5</td>
<td>6.1</td>
<td>1.9</td>
<td>3.1</td>
<td>3.7</td>
<td>2.7</td>
<td>4.2</td>
</tr>
</tbody>
</table>
NIL11 sub-NILs marker-genotype mean t-tests: LB resistance
Fine mapping of LB resistance QTLs

lb4, lb5b, lb11b: Results

• Tomato QTLs lb4, lb5b, lb11b mapped to 5 - 9 cM intervals:
 – All 3 coincide with potato LB resistance QTLs
 – Lb5 and lb11 coincide with several horticultural traits
 – Lb5b coincides with Solanaceae pathogen/pest R-genes or R-gene clusters

• QTL/QTL and QTL/R-gene coincidence suggests functional conservation in Solanaceae
High-resolution mapping of LB resistance QTLs \textit{lb5b} and \textit{lb11b}

- QTLs \textit{lb5b} and \textit{lb11b} from \textit{hirsutum} each conferred resistance to \textit{P. infestans} in \textit{L. esculentum} background
 - Indicates QTLs additive in effect
 - Coincidence with horticultural trait loci (+/- linkage drag)

- \underline{Refine LB resistance QTL locations by high-resolution mapping with recombinant sub-NIL progeny}

- Evaluate potential beneficial alleles and linkage drag for horticultural traits
Identification of sub-NIL recombinants for late blight resistance QTLs using marker-assisted selection
High resolution mapping of LB resistance QTLs $lb5b$ and $lb11b$

- Sub-NIL recombinant lines for QTLs $lb5b$ and $lb11b$ marker selected and advanced to homozygosity
 - BC5S4 families: ~ 60 per QTL
 - Replicated field trials (Salinas and Davis) in 2009

- Evaluate LB resistance and horticultural traits of recombinant families in field trials

- Use trait data to map trait QTLs and determine linkage among loci
LB resistance QTLs: Next Steps

- Complete high-resolution mapping ($lb5b$ & $lb11b$)
- Combining ability study with selected recombinants in F_1 hybrid combinations with commercial inbreds

Future:
- ID candidate genes for QTL via genomic sequence analysis → do functional tests → *identify gene(s) underlying QTL that control the resistance phenotype*
- Determine relationship of resistance QTLs to R-genes → comparative genomics within Solanaceae
- MAS transfer of lb QTLs for breeding tomato
Chilling Injury and Temperature-Induced Water Stress in Tomato

• Temperatures below 10°C damage cultivated tomato, cause crop loss and shortened production season

• Wild *Lycopersicon hirsutum* LA1778 originates from high altitudes (10,000 feet) and thrives at chilling temperatures that damages cultivated tomato

• What is genetic and physiological basis of resistance to chilling and temperature-induced water stress?
Root chilling reduces water transport to shoots & leaves, causing water stress

- If roots are chilled (4-6°C):
 - Shoots of cultivated tomato wilt because stomata stay open, causing water loss.
 - Shoots of *L. hirsutum* LA1778 maintain normal water content by closing stomata, preventing water loss. Root-to-shoot signaling is involved.
QTL Mapping of Shoot Turgor Maintenance under Root Chilling

- Interspecific backcross (BC_1) population:

 \[
 L. \text{esculentum (SC)} \times L. \text{hirsutum LA1778 (SI)} \]

 \[
 \downarrow \quad \♀ L. \text{esculentum} \times F_1 \text{hybrid (SI)} \]

 \[
 BC_1 \text{ set 1 (n = 196)} + BC_1 \text{ set 2 (n = 204)} \]

- Evaluated BC_1 population sets for shoot turgor maintenance after 2 hr root exposure to 4°C in chilled nutrient solution in replicated experiments
- Major QTL on chr 9 ($stm9$) detected consistently
QTL \textit{stm9} detected consistently across experiments

\begin{itemize}
 \item \texttt{GDist} (cM)
 \item \texttt{Marker}
 \item \texttt{E39M4933}
 \item \texttt{TG254}
 \item \texttt{T758/T1641}
 \item \texttt{E35M5036}
 \item \texttt{T1670}
 \item \texttt{T1673}
 \item \texttt{CT143}
 \item \texttt{T532}
 \item \texttt{TG223}
 \item \texttt{cLET3c15}
 \item \texttt{T1617}
 \item \texttt{E39M4718}
 \item \texttt{E32M6266}
 \item \texttt{TG35}
 \item \texttt{CT74}
 \item \texttt{TG8}
\end{itemize}

\begin{itemize}
 \item \texttt{Ch9}
 \item \texttt{Dist. (cM)}
 \item \texttt{0.0}
 \item \texttt{5.3}
 \item \texttt{7.7}
 \item \texttt{9.3}
 \item \texttt{10.2}
 \item \texttt{12.6}
 \item \texttt{15.2}
 \item \texttt{18.5}
 \item \texttt{19.4}
 \item \texttt{22.0}
 \item \texttt{22.2}
 \item \texttt{27.7}
 \item \texttt{39.5}
 \item \texttt{42.0}
 \item \texttt{42.2}
 \item \texttt{51.7}
 \item \texttt{0.758}
\end{itemize}

\begin{itemize}
 \item \texttt{LRTS}
 \item \texttt{Set 1, fall '98}
 \item \texttt{Set 1, spring '03}
 \item \texttt{Set 2, spring '03}
 \item \texttt{Set 2, fall '03}
 \item \texttt{P = 0.05}
\end{itemize}

\textbf{← peak}
QTL *stm9*: Physiology and Genetics

- NILs confirmed positive phenotypic effect of *hirsutum* alleles at *stm9*
- Fine-mapping with sub-NILs located *stm9* to ~2.7 cM region on chr 9
- Recombinant sub-NILs being generated for high-resolution mapping of *stm9*
- *Future goal*: ID candidate gene(s) for *stm9*
QTL *stm9*: Physiology and Genetics

- Reciprocal root-shoot grafted plants with various genotypes for *stm9* alleles indicated root-shoot communication involved in stomatal closure to preserve shoot turgor

- Characterizing physiological traits of sub-NILs differing for alleles (H versus E) at *stm9*

- Analyzing xylem sap with proteomics and metabolomics to determine signaling molecules

- *Future goal: Role of stm9 in recovery from water stress episodes under field conditions*
Acknowledgements

St. Clair Lab Group:
Emily Johnson*
Erron Haggard*
Marilyn West
Doug Brouwer
Sylvaine Coulibaly
John Goodstal
Glenn Kohler
Liz Jones

*current members

Collaborators:
Arnold Bloom (Physiology)
Lesley Randall

Research Funding Sources:
USDA-NRICGP Plant Genome Program
USDA-NRICGP Plant Responses to the Environment
California Tomato Growers (CTC & CTRI)